Cefic processes for ES development
PRISME2 workshop
24 June 2009,
Šoporňa, Slovakia

L. Heezen
Agenda

- Cefic flow diagram for ES development and supply chain communication
- ES Development
 - Generic Exposure Scenarios
 - Specific Exposure Scenarios
ES Development & Communication model

M/I and/or M/I-DU Associations => determine strategy:
- Systematic assessment of safe uses (use coating technologies)
- Map uses and uses in the supply chain
- Input of ES titles and Use Descriptors

Determine strategy & collect info

M/I and DU partnership via trade associations
- Generic ES Development
 - Input of selected customers
 - Development GES library

M/I and selected DU’s
- Input of selected customers
- Use of Cefic ES template

Final Exposure Scenario (M/I)

Use Alignment

① M/I
- Communicate Uses (ES titles, Use Descriptors)
 - to direct DU for further communication
 - in the supply chain

DU
- Use covered?
 - Yes
 - DU Wait for final ES
 - No
 - OR

DU
- Complete feedback form
- Await decision M/I

DU
- Prepare CSA/CSR
- Inform Agency

Communication to
- direct DU
- Co-ordination of e-SDS

Legend
M/I = Manufacturer / Importer
DU = Downstream User

For specific products and applications the appropriate (next) steps in the above diagram need to be determined based on expert judgement: not always all steps are needed and/or the order can be adapted.
Content of Exposure Scenarios

Description of conditions suitable to ensure control of risks related to the uses of a substance during the entire life cycle. Environment, workers and consumers to be covered. One ES can cover one or more use:

- Operational conditions (OC) determining the exposure (e.g. duration of task)
- Practical risk management measures (RMM) suitable / needed to prevent, reduce or limit risks (e.g. exhaust ventilation)

Explanation how the exposure estimates related to these conditions and RMM have been derived

Title of exposure scenario indicating for which uses it can be applied

Boundaries within which the exposure scenario is applicable.
What is an Exposure Scenario?

A description of safe use by describing
- Conditions of use
- Risk management measures
- “Algorithm” to be used by DU for validating safe use

ES covers all activities and processes within the value chain
- Production: chemical synthesis of the substance and use as intermediate
- Formulation: mixing and blending into a preparation
- Industrial, professional use
- Consumer exposure and private use
- Service life
- Waste Life stage
When are Exposure Scenarios needed?

Exposure Scenarios and CSAs need to be included in the CSR if

- The substance is classified as dangerous \textbf{or}
- The substance is a PBT or vPvB \textbf{and}
- Produced or imported in excess of 10 t/a
- In a preparation in a concentration above limits indicated in article 14

\textbf{DU can choose to do his own CSA/CSR unless}

- No SDS needs to be provided
- The supplier is not required to develop a CSA
- The tonnage limit is < 1 t/a
- The downstream uses should also be taken into account
- Exposure scenarios need to be developed for all identified uses
Exposure scenario development

Exposure scenarios need to be developed for:

• Manufacturing process

• Identified uses

• Life cycle stages from manufacturing to identified uses till waste stages.
Cefic workflow on ES development and communication

Development of Exposure Scenarios, using two processes:

- Generic Exposure Scenario process
- Specific Exposure Scenario process
ES Development & Communication model

M/I and/or M/I-DU Associations => determine strategy
- Systematic assessment of safe uses (use of Tier1 tool)
- Map uses and use conditions in supply chain
- Initial ESs, ES titles and Use Descriptors

M/I and DU partnership via trade associations
- Generic ES Development
 - Input of DU Associations
 - Development GES library
- Specific ES development
 - Input of selected customers
 - Use of Cefic ES template

Final Exposure Scenario (M/I)

M/I
- Communicate Uses (ES titles, Use Descriptors) to direct DU for further communication in the supply chain

DU
- Use covered?
 - Yes
 - DU Wait for final ES
 - No
 - DU
 - Complete feedback form
 - Await decision M/I

Communication to direct DU
- Distribution of e-SDS

Legend
M/I = Manufacturer / Importer
DU = Downstream User

For specific products and applications the appropriate (next) steps in the above diagram need to be determined based on expert judgement: not always all steps are needed and/or the order can be adapted.
Generic Exposure Scenarios (GES)

- GESs describe ESs for (groups of) substances for an area of operation within industry and are developed by M/I s in partnership with DU Associations (surrogate for individual DU)
- The (composite) GES is aggregated from the ESs for individual tasks/activities and incorporated into a library of GESs for access by relevant stakeholders
 - describes Risk Management Measures & Operational Conditions relevant for safe use of a group of substances with a similar risk profile
- M/I selects relevant GES to support their substance registration
 - GES and supporting documentation is refined as necessary to form the substance-specific ES for demonstration of safe use and inclusion within their CSR
 - ES is transferred to the e-SDS for communication to customers
Key Characteristics of GESs

Focus on common areas of use of a (group of) substance (that can be characterised by groups of PROCs, ERCs and/or PCs)

Determine simple titles (and descriptions) that describe the areas of use and that are understandable across DUs within and across supply chains

Involve the collaboration of M/I (and/or formulator) associations and DU associations

Represent a mapping of all (or key parts of) the supply chain for a substance (or groups of substances)

Follow a process that aligns with the requirements of the TGD and delivers documentation sufficient to meet these for a CSR and/or eSDS (subject to confirmation on the part of the registrant)

Communicate all relevant OCs and RMMs for the identified scenarios

Describe the ES according to a library of standard phrases
How is GES developed?

1. Map the supply chain to compile an inventory of uses together with likely circumstances of handling

2. Characterise typical RMMs and OCs for the intended uses

3. Determine the likely exposures (personal and environmental) for each use for substance life cycle

4. Confirm adequacy of existing RMMs through PNEC and DNEL comparisons and iterate where necessary to define adequate risk control

5. Aggregate the RMMs for the uses to form the GES

6. Define domain of reliable application for the GES

7. M/I selects relevant GES for substance registration

8. M/I matches the specific ES to the M/I product names

M/I obtains from internal product stewardship/technical activities; dialogue with representative trade groups (using a pre-populated template)

As #1 Above

Use ECETOC TRA for human health and EUSES for environmental risks

Refer to other sources of RMM efficiencies for the application/sector if these need to be confirmed e.g. COSHH Essentials, BREF documents

RMMs communicated reflect, at a minimum, typical practice for the application and enable alignment with language/jargon for the sector

Under what circumstances are the advocated RMMs reliable?

M/I matches the substance-specific ES to the relevant M/I product names for communication to customers
4 assessment approaches appear to be required
1. Mapping the Supply Chain

Seeks to characterise the nature of known uses of the substance/group of substances across the supply chain

- Identification of relevant Use Descriptors
- Description of typically encountered Risk Management Measures
- Description of associated Operating Conditions
- Characterisation of commonly used sector terminology
- Identification of commonly communicated Product Stewardship and related information (optional)

Takes place after an initial identification of the nature of uses known to the M/I e.g.

- Formulation & packing of solvent-based mixtures (industrial)
- Use of coatings (industrial, professional and consumer)
1. Mapping the Supply Chain

Table 1: Mapping Uses in the Supply Chain

<table>
<thead>
<tr>
<th>Sector/User Group</th>
<th>Contributing Scenarios</th>
<th>Typical Mapped Operating Conditions</th>
<th>Typical Mapped RMMs</th>
<th>Process Category / TRA equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Solvent & Extraction Agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>General process exposures / enclosed cleaning systems</td>
<td>Continuous; daily; 15 mins - 1 hour</td>
<td>Enclosed process; External location; closed/semi-closed sampling point</td>
<td>PROC2 / TRA2 Closed continuous process (with sampling)</td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>General process exposures and sample collection</td>
<td>Batch; daily during production; 15 mins - 1 hour</td>
<td>Enclosed process; External location; closed/semi-closed sampling point</td>
<td>PROC3 / TRA3 Closed batch process (with sampling)</td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>Draining equipment</td>
<td>Weekly; 15min - 1 hour; ambient temp</td>
<td>External location; Drain and flush, Permit to Work procedures, PPE</td>
<td>PROC8 / TRA7 Discharging to/from vessels</td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>Quality control</td>
<td>Daily; <15 mins; ambient temp</td>
<td>Fume cupboard, PPE</td>
<td>PROC15 / TRA13 Laboratory analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cleaning agents</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial (SU3)</td>
<td>Enclosed cleaning systems</td>
<td>Batch process; daily; 1 - 4 hours; ambient temp</td>
<td>Closed system</td>
<td>PROC1 / TRA1 Closed process (no sampling)</td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>Filling / preparation of equipment from drums</td>
<td>Daily; 15 mins - 1 hour; ambient temp</td>
<td>Pumped transfer from drum to application equipment</td>
<td>PROC8 / TRA7 Discharging to/from vessels</td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>Spraying</td>
<td>Daily; >4 hours; ambient temp</td>
<td>Enclosed plant under ventilation. Collection and containment of waste.</td>
<td>PROC7 / TRA6 Spray application with LEV</td>
</tr>
</tbody>
</table>

M/I describes life cycle and identifies relevant OCs, RMMs and PROCs. Consumer uses (PCs) described in separate sheet.
2. DU Review and Feedback

DU sector/trade organisation(s) review initial M/I mapping activity and identify where revisions required e.g. increased scope; inappropriate RMM descriptions; absent PROC codes; etc.

Experience suggests that the feedback process is best undertaken as a face to face discussion

Feedback is tracked and recorded using a suitable template (Solvents example in excel)
3a. Justifying the Content of the ES

Mapping seeks to characterise the likely exposures and to describe the nature of advised RMMs for defined risks

- Carry out exposure estimates for relevant exposure routes for defined OC/RMM combinations (using suitable Tier 1 models)
- Make an assessment of the potential risks based on informed assumptions of the likely DNEL/PNEC ranges for the substances of interest
- Identify the basis by which the identified REACH OCs and RMMs will be described (using standard phrases)
- Identify areas where the communication of Product Stewardship information may also be advisable
- Carry out the CSA if a DNEL or PNEC is available
3b. Justifying the Content of the ES

Table 1: Mapping Uses in the TRA

<table>
<thead>
<tr>
<th>Sector/User Group</th>
<th>Process Category/TRA equivalent</th>
<th>Tier 1 assumptions and adjustments where required</th>
<th>Predicted Exposure - CECTOC TRA estimate</th>
<th>Significant Dermal exposure?</th>
<th>RMMs for communication</th>
<th>RMM Codes for communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>PROC1 / TRA1 Closed process (no temp.)</td>
<td>>4 hours, ambient temp.</td>
<td>Closed process. No exposure.</td>
<td>0.01</td>
<td>No</td>
<td>Skin and eye protection</td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>PROC8 / TRA7 Discharging to/from vessels</td>
<td>>4 hours daily; ambient temp.</td>
<td>No LEV</td>
<td>50</td>
<td>Yes</td>
<td>Pumped transfer from drum to application equipment. Gloves</td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>PROC7 / TRA6 Spray application with LEV</td>
<td>>4 hours daily; ambient temp.</td>
<td>With LEV</td>
<td>50</td>
<td>Yes</td>
<td>Enclosed plant under ventilation. Collection and containment of waste. Gloves</td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>PROC13 / TRA11 Treatment by dipping/pouring</td>
<td>>4 hours daily; ambient temp.</td>
<td>With LEV</td>
<td>50</td>
<td>Yes</td>
<td>Enclosed plant under ventilation. Collection and containment of waste. Gloves</td>
</tr>
<tr>
<td>Industrial (SU3)</td>
<td>PROC10 / TRA9 Roller application</td>
<td>>4 hours daily; ambient temp.</td>
<td>No LEV</td>
<td>20</td>
<td>Yes</td>
<td>Collection and containment of waste. Gloves</td>
</tr>
</tbody>
</table>

Professional (SU22)	PROC6 / TRA7 Discharging to/from small	>4 hours daily; ambient temp.	No LEV	50	Yes	Gloves	PPE15
Professional (SU22)	PROC11 / TRA6 Spraying without	>4 hours daily; ambient temp.	No LEV	500	Yes	LEV and/or RPE. Gloves. Eye Protection	E53, PPE16
Professional (SU22)	PROC13 / TRA11 Treatment by dipping/pouring	>4 hours daily; ambient temp.	No LEV	100	Yes	Gloves	PPE15
4a. Constructing the GES

The GES describes the combined RMMs and OCs relevant for the safe use (H & E) of a substance or group of similar substances for an area of operation in industry.

The GES is developed around the nature of the identified uses (industrial, professional and consumer) and accounts for the OCs/RMMs considered appropriate for human health and/or the environment.

The GES is constructed by integrating the conclusions from the mapping templates.
Generic Exposure Scenario
(Professional Use of Coatings)

Human health
- **Pouring from small containers**: undertake in a well-ventilated area. Wear suitable gloves (type EN374, code FJ) if skin contact likely.
- **Spraying**: carry out in a vented spray booth. If no dedicated facility available, then use a respirator conforming to EN140 (with Type A N95) or better standard and undertake in a well-ventilated area segregated away from other work activities.
- **Manual applications** e.g. brushing, rolling, spreading: undertake in a well-ventilated workplace. Use long handled brushes and rollers. Wear gloves (type EN374, code FJ) if prolonged contact with material expected.
- **Equipment clean-down**: Wear gloves (type EN374, code FJ) if prolonged contact with residual material expected. Transfer wash-downs in sealed containers to solvent recovery and recycle solvent or send for disposal or recycle.

Risk management measures

- GES communicates the consolidated RMMs and OCs for the relevant PROCs in an area of application
- GES format provides the opportunity for the communication of sector product stewardship advice
- RMMs and OCs relevant for a task (PROC) clearly distinguished and described in manner relevant for DU
4b. Describing the Applicability Domain

The applicability domain describes the boundary conditions ("risk band") within which the GES information is reliable

- The GES contents are not valid outside these

The applicability domain is a concept that is only relevant for the GES prior to verification against a DNEL/PNEC for a specific substance

- i.e. it provides an indication of the types of substances and their conditions of use to which the GES may apply

After verification, the GES becomes a substance-specific Exposure Scenario for use in supporting a substance Registration and in customer communication via an e-SDS
Domain of Application for the GES

<table>
<thead>
<tr>
<th>Scenario title : X XXX</th>
<th>Validity Domain</th>
<th>Typically Characterised By</th>
<th>Typical Substances/ Mixtures Not Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Health</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNEL : 10 - 200 ppm (8 hour)</td>
<td>Simple aliphatic solvents (except those containing n-hexane); simple alcohols and esters</td>
<td>R43, R42</td>
<td></td>
</tr>
<tr>
<td>Moderate volatility</td>
<td>Liquids with a vapour pressure of < 300 hPa and used in processes operated at ambient temperature</td>
<td>Liquids having V.P > 300 hPa and processes operated at > 50oC</td>
<td></td>
</tr>
<tr>
<td>Moderate dustiness</td>
<td>Granules, pellets, sand like materials</td>
<td>Dusty solids e.g flour like materials</td>
<td></td>
</tr>
<tr>
<td>Applicable for solvent content up to 50%</td>
<td>N/a</td>
<td>Preparations having solvent content >50%</td>
<td></td>
</tr>
</tbody>
</table>
Benefits of Generic Exposure Scenarios?

Developed in partnership between M/Is and DU representatives
 • Relevance of the information for DUs. Technology, systems, language

Starting position is verification of the utility of ‘existing practice’
 • no surprises; business as usual

Aim for consistency in communication within and across supply chains
 • Together with simplicity and understandability

Level of detail aligned with DU needs
 • Simplified ES ‘highlights’ in the eSDS supported by availability of detailed ES information as part of Chemical Safety Assessment

Minimising unnecessary supply chain communications
 • Starting assumption is what is communicated is relevant and useful
 • GES format designed to be useful without need for further DU re-work

Provide basis for development of GES libraries
 - forms a resource for the development of further ESs
Example of GES titles for Solvents

From the perspective of how REACH ESs need to be communicated

Manufacture of solvents (industrial)
Bulk loading and repacking of solvents (industrial)
Formulation & packing of solvent-based mixtures (industrial)
Coatings (industrial, professional and consumer)
Cleaning agents (industrial, professional and consumer)
Drilling muds (industrial)

Metal working fluids / rolling oils (industrial and professional uses)
Propellants (professional and consumer)
Blowing agents (industrial)
Release agents & binders (industrial and professional)
Agrochemicals (professional and consumers)
Road construction (professional)
Other consumer uses

* List is illustrative and is to be fully developed and agreed within ESVOC
Cefic workflow on ES development and communication

Development of Exposure Scenarios, using two processes:

- Generic Exposure Scenario process
- Specific Exposure Scenario process
ES Development & Communication model

M/I and/or M/I-DU Associations => determine strategy
- Systematic assessment of safe uses (use of Tier1 tool)
- Map uses and use conditions in supply chain
- Initial ESs, ES titles and Use Descriptors

M/I and DU partnership via trade associations
- Input of selected customers
- Development GES library

M/I and selected DU’s
- Specific ES development
 - Input of selected customers
 - Use of Cefic ES template

Final Exposure Scenario (M/I)

M/I
Communicate Uses (ES titles, Use Descriptors) to direct DU for further communication in the supply chain

DU
- Use covered?
 - Yes → DU Wait for final ES
 - No → DU
- Use not covered?

DU
- Complete feedback form
- Await decision M/I
- Prepare CSA/CSR
- Inform Agency

Communication to direct DU

Distribution of e-SDS

Legend
- M/I = Manufacturer / Importer
- DU = Downstream User

For specific products and applications the appropriate (next) steps in the above diagram need to be determined based on expert judgement: not always all steps are needed and/or the order can be adapted.
What are Specific Exposure Scenarios?

- **Specific Exposure Scenarios (SES)** describe Exposure Scenarios (ES) for individual substances in both specific and general uses.

- SESs are developed by the M/I in dialogue with DU selected representative customers.

- SESs can cover one task or a set of tasks related to an application.

- The SES process is particularly useful to develop ESs for substances in relatively short supply chains or supply chains lacking well structured sector organizations.
Cefic ES template dialogue

Draft template. Please consult Cefic website for final version
CEFIC dialogue template for SES building

- Enables M/I to develop initial ESs, using a harmonised industry format
- Enables DU to give feedback on uses and use conditions to M/I in a standardized way

<table>
<thead>
<tr>
<th>No.</th>
<th>Information Item</th>
<th>available options (plus explanatory notes)</th>
<th>Proposed ES (to be completed by M/I)</th>
<th>Deviation from Proposed ES (to be completed by DU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Product Identification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Exposure Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>General Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Product Category</td>
<td>Selection from short list Selection from detailed list</td>
<td>Proposed ES</td>
<td>Deviation from Proposed ES</td>
</tr>
<tr>
<td>1.</td>
<td>Exposure Category</td>
<td>Selection from short list Selection from detailed list</td>
<td>Proposed ES</td>
<td>Deviation from Proposed ES</td>
</tr>
<tr>
<td>1.</td>
<td>Activity Category</td>
<td>Selection from short list Selection from detailed list</td>
<td>Proposed ES</td>
<td>Deviation from Proposed ES</td>
</tr>
</tbody>
</table>

- Enables DU to enter new ES, if he finds his use not covered (art. 37-2)
- Structured according to ES format in Technical Guidance Document
- Each section contains the basic information for description of the ES and exposure assessment using the ECETOC TRA tool
- Template will be modified to support final version of the ECETOC TRA tool
How are SESs developed?

SES process: stepwise approach, initiated by M/I in dialogue with DU

1. Inhouse collection of information on uses and use conditions
2. Development of initial SESs (use of SES dialogue template)
3. Dialogue with selected customers (feedback, using SES dialogue template)
4. Development of draft SESs (based on input by customers)
5. Evaluation of draft SESs in the CSA Aggregation into final SESs
6. Documentation of SESs in Chemical Safety Report
7. Transformation of SES for substance to ES for product (annex SDS)
8. Communication of ES to direct DU customers
How are SESs developed?

1. Inhouse collection of information on uses and use conditions
 - use of mapping form recommended:
 - description of tasks
 - user type (ind/prof/cons)
 - process details
 - use descriptors
 - exposure duration
 - typical RMMs used (e.g. LEV, RPE, PPE)
 - utilize available sector use mappings performed by sector organizations

2. Development of initial SESs (use of SES dialogue template)
 - based on collected information
 - use of Cefic dialogue template for SES building for products
How are SESs developed?

3. Dialogue with selected customers (feedback, using SES dialogue template)
 - selection of representative customers
 - conference call:
 - explain purpose of dialogue and intended results
 - confirmation of correct selection
 - explanation of dialogue template
 - agreement on activities and timing
 - type of dialogue (face-to-face, email, phone; separate/group) depending on opportunities and needs

4. Development of draft SESs (based on input by customers)
 - based on sufficient input by selected customers
 - modification of initial SESs for product
 - creation of draft SESs for substance
How are SESs developed?

5. Evaluation of draft SESs in the CSA
 Aggregation into final SESs

 • Tier 1 exposure assessment for each draft SES, using ECETOC TRA tool
 • comparison with applicable DNELs and PNECs
 • where safe use is not demonstrated: proceed to Tier 2 assessment (models, exposure data)
 • after demonstration of safe use: aggregation of SESs into final (composite) SESs for SESs with equivalent RMMs

6. Documentation of SESs in Chemical Safety Report

 • final SESs in combination with the results of the risk assessment are included in the CSR
How are SESs developed?

7. Transformation of SES for substance to ES for product (annex SDS)
 - combination and evaluation of the SESs of the substances
 - compilation of the ES for the product
 - use of the ES format in the TGD (annex to the SDS) for structuring the ES of the product
 - adaptation of language (using information in RMM libraries) to more industry jargon to increase readability and facilitate comprehension by DUs

8. Communication of ES to direct DU customers
 - communication of ESs to direct DU customers using web-based communication tools
 - after registering the substance (submission of CSR as part of the registration dossier): distribute the ES as annex to the SDS at first delivery of a product to a DU customer

8. Communication of ES to direct DU customers
 - communication of ESs to direct DU customers using web-based communication tools
 - after registering the substance (submission of CSR as part of the registration dossier): distribute the ES as annex to the SDS at first delivery of a product to a DU customer

34
Final remarks

• Dialogue template for SES building is aimed at two way communication in an effective and efficient way; it is NOT a questionnaire!

• SES and GES development processes are complementary; both processes on their own or in combination offer the flexibility needed to develop ESs that suit M/I needs and the needs of DU customers

• Cefic strongly supports and recommends the use of both ES development methods and accompanying tools to achieve optimal information exchange on uses in the supply chain
Selecting the Approach

<table>
<thead>
<tr>
<th>Generic ES approach</th>
<th>Specific ES approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Focus</td>
<td>Main Focus</td>
</tr>
<tr>
<td>M/I and DU Partnership via Trade Associations</td>
<td>M/I and Key customer iteration</td>
</tr>
<tr>
<td>Common Uses, e.g. commodity chemicals</td>
<td>Specialised Uses, e.g. fine chemicals</td>
</tr>
<tr>
<td>Dispersive application</td>
<td>Limited supply chain</td>
</tr>
<tr>
<td>Assumes some knowledge of substance handling by M/I</td>
<td>May have limited knowledge of substance handling in the supply chain by M/I</td>
</tr>
<tr>
<td>Groups of substances with similar applications</td>
<td>Single substance with specific or general applications</td>
</tr>
</tbody>
</table>
Available tools

- Newsletter: guidance on Use and ES development and Supply Chain Communication
 http://cefic.org/files/Downloads/Guidance_Use_and_ES_devlpt_and_SCCm.doc
- VCI Practical guide CSR eSDS

Preparation phase

- Use communication holding letter
- Use mapping template (UseR)
 http://cefic.org/files/Downloads/Final_Template_09_03_09.xls
- Guidance on GES process + templates
 To be published soon

Use and ES communication

- IT tool requirements
- Guidance on SES process + templates
 http://cefic.org/files/Downloads/Final_Template_09_03_09.xls

Final Exposure Scenario (M/I)

ES for preparations, DPD+
To be published soon

Available tools

- Strictly Controlled Intermediates
 Available on Cefic website